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Summary. In this paper, we present an algorithm for partitioning any given 2d
domain into regions suitable for quadrilateral meshing. It can deal with multidomain
geometries with ease, and is able to preserve the symmetry of the domain. Moreover,
this method keeps the number of singularities at the junctions of the regions to a
minimum. Each part of the domain, being four-sided, can then be meshed using a
structured method. The partitioning stage is achieved by solving a PDE constrained
problem based on the geometric properties of the domain boundaries.

Key words: mesh generation; finite element methods; partial differential equations,
elliptic; quadrilateral; partitioning; multidomain

1 Introduction

In numerous computational engineering applications, such as automobile crash
simulations, structural mechanics, neutronics or fluid-structure interactions,
quadrilateral meshes are preferred over triangular meshes [1]. Moreover, the
geometric domain to work on is sometimes composed of several materials, gas
or fluids. The meshes are then referred as being multi domain.

1.1 Problem statement

The most desirable properties of quadrilateral meshes usually are:

1. to minimize the number of discrete singularities, defined here as the non
4-valent vertices (internal vertices that do not have exactly 4 neighbors);

2. to align elements along the boundary, i.e. to have layers of quadrilaterals
aligned along the boundary in a parallel fashion (e.g. boundary layers);

3. to achieve high-quality elements, i.e. to have each quadrilateral as close
to a square or a rectangle as possible;
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4. and to have the elements abide by a prescribed size map.

In case of multi domain simulations, meshes may have to comply wit a fifth
desirable property: the mesh may be conform along the interface lines be-
tween incident domains. Then the line interface must be explicitly discretized
in the mesh3. Generating meshes fulfilling all those properties is a difficult
task where the optimization of one property may be in contradiction with the
optimization of another one. Hence, a compromise between the various con-
straints and requirements is often required. Several numerical and algorithmic
solutions have been proposed over the last decades to generate quadrilateral
meshes abiding by those properties. Those methods can be categorized as
either structured [2, 3] or unstructured [4, 5, 6, 7, 8, 9], depending on the
importance they give to the underlying mesh structure. On the one hand,
structured methods are unable to mesh most geometries and to deal with
boundary discretization constraints along interface lines. On the other hand,
unstructured methods usually yield meshes lacking some structure and having
many undesired singularities. A good compromise between the geometric flex-
ibility of fully unstructured meshes and the numerical efficiency achieved on
globally structured meshes can be achieved through block-structured meshes.
Such meshes can be considered as unstructured arrangements of quadrilateral
regions meshed in a structured way.

Block-structured meshes have one main advantage over other kinds of
meshes: they can theoretically adapt to any given domain while maintain-
ing the good element quality associated with structured meshes. Moreover,
block-structured meshes have two important added benefits that no unstruc-
tured mesh generation method would dispute. First of all, efficient solvers can
be employed within individual regions due to their logical rectangular struc-
ture [10]. Second of all, block-structured meshes have a hierarchical memory
structure, allowing processors to have dedicated memories with quick access
containing the whole information they need.

However, to the best of our knowledge, no algorithm has been developed
to provide a good enough partitioning of an arbitrary domain into four-sided
regions. Most of the attempts to provide such an algorithm have more or less
revolved around the use of the medial axis of the domain [11]. However, the
medial axis is numerically unstable, in that small changes of the domain ge-
ometry can greatly perturb the obtained partitioning. Moreover, the resulting
regions are generally not four-sided, and thus are not optimal for quadrilateral
meshing. Even for a domain as simple as a square, a medial axis decomposition
provides triangular parts, and not the grid one would expect. The approach
we propose here is an attempt to get a block-structured partitioning that
overcomes the main drawback of the previous developed techniques.

3In the case of numerical simulations where contact and sliding effects between
materials are modeled it is preferable to have duplicated vertices and edges in the
contact areas.
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1.2 Overview of our approach

Given a 2d domain Ω of arbitrary shape and complexity, we introduce a new
automatic domain partitioning method where the geometric features of ∂Ω

(see Figure 1-a) are propagated in Ω by solving a PDE (see Figure 1-b). By
this way, we ensure the first three properties given previously to be satis-
fied. Our process assumes a uniform triangulation Th of Ω, that is used to
solve a PDE problem that yields a directionality field (see Figure 1-c and Sec-
tion 2). Field singularities are then identified numerically and lines connecting
singularities are deduced from the directionality field. Using these lines, our
approach achieves a partition of Ω into four-sided regions (see Figure 1-c and
Section 3). This algebraic approach to domain partitioning can be used on ar-
bitrary 2d domains, as well as with domains presenting interfaces or multiple
closed curves delimiting boundaries. It preserves the symmetry of Ω and min-
imizes the number of singularities. Once such a partitioning is defined, each
region can then be easily meshed through a bilinear transfinite interpolation.
The resulting block-structured meshes are usually of very high quality (see
Figure 1-d and Section 4). Our method, however, cannot create meshes with
a prescribed varying size map. It creates meshes with constant size elements,
thus lacking the fourth properties a mesh shall exhibit. One way to overcome
this drawback could be to partition Ω and then to mesh each quadrilateral
region using an unstructured method dealing with varying size maps[12].

2 Creation of a directionality field

The main idea of our method consists in using a unit vector field prescribed
on ∂Ω that we propagate on the whole Ω. This propagation is performed
by solving a PDE with Dirichlet conditions defined on ∂Ω. Numerically, this
PDE is solved by applying a P1 finite element method onto a triangulation
Th of Ω with the Dirichlet conditions given on the vertices of ∂Th. Note that
the interfaces between different domains are considered as being part of the
geometry boundary in the following. A first intuition would be to use the
outer normal vector field defined on the boundary. However, such a field is
discontinuous at a corner with an angle of π

2
, whereas the desired mesh at such

a corner is perfectly regular. To overcome this problem, we use the concept
of directionality [13, 14], which is continuous on such corners and thus better
fits the expected structure of quadrilateral meshes.

2.1 Definition of the directionality of Ω

A regular vertex P of a quadrilateral mesh of Ω, that does not belong to ∂Ω,
is 4-valent, and the 4 edges connected to P can be seen as two sets of opposite
edges. Each of these sets, in turn, can be seen as the local discretization of a
curve, with P being the intersection of two curves. Our aim being to generate
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a b

c d

Fig. 1. Overview of the main steps of our algorithm. In a, the background mesh
used. The geometry has two domains with distinct mesh colors. In b, the unit repre-
sentation vector field obtained by solving a PDE. In c, the corresponding cross field
and the domain partitioning into four-sided regions. In d, a full quadrilateral mesh
is obtained by using a bilinear transfinite interpolation over each region.

quadrilateral elements, we assume that the the two directions of a cross must
be orthogonal one to the other. The two tangent directions of these curves
at P can thus be described by a cross, that we call the directionality of the
mesh at P (see Figure 2). This notion of cross field is often used in computer
visualization nowadays [13], and is usually defined as follows :

Cθ =

{

vk =

(

cos(θ +
kπ

2
), sin(θ +

kπ

2
)

)T

, 0 ≤ k ≤ 3

}
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π
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Fig. 2. Examples of crosses along the corresponding representation vectors. Notice
that the crosses in (a) and (e) have the same representation vector, and that the
representation vector may be different from any vector of the cross.

An important point to notice is that the cross field is not related to the
reference axis used to compute angles. Indeed, choosing as reference axis a
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direction that makes an angle θ0 with the X-axis is equivalent to rotating Ω

by an angle −θ0. In that case, when each cross rotates by an angle −θ0, each
representation vector rotates by an identical angle of −4θ0, thus leaving the
problem globally unchanged.

2.2 Definition of the representation vector field as the solution of

a non-linear PDE

Our goal is to propagate an information known on the boundary of the domain
inside the domain in a smooth fashion. The solution of this problem can be
considered as the steady-state of a of a combustion problem

∂u

∂t
− div(k∇u) = 0 (2)

e.g. an elliptic problem that ensures the maximum principle on u. With k

constant, we get the Laplace equation. Solving this problem consists here in
minimizing a functional J defined as:

{

J(u) =
∫

Ω
|∇u|2dx,

u(x) = u0(x) ∀x ∈ ∂Ω,
(3)

where x is a vector function and the Dirichlet condition is defined at a point
P of ∂Ω as the representation vector corresponding to the cross defined by
tangents and normals to ∂Ω at P . This guarantees that the corresponding
cross field is locally ”aligned” with each boundary in its vicinity. In order
to define this representation vector at every C0 corner C of ∂Ω, we arbitrary
define it at C as the average of the representation vectors of the two geometric
edges incident to C.

Solving this problem is easy using FEM or other numerical methods. How-
ever, in order to keep vectors unitary, we add a non-linear constraint. Indeed,
allowing norms to vary introduce a bias leading to non-constant variations of
the crosses orientations, which is not desirable as only directions are mean-
ingful in our problem. Thus, given a geometric domain Ω, we minimize the
functional J defined as4:







J(u) =
∫

Ω
|∇u|2dx,

u(x) = u0(x) ∀x ∈ ∂Ω,

|u(x)| = 1 ∀x ∈ Ω.

(4)

As such, Problem (4) is ill-posed, as a solution may not exists. Indeed, the
solution of the same problem without considering the non-linear constraint
may result in some cases in a vector field having one or more zeroes; but
as the non-linear constraint prevents the vector field from having any zero,
the resulting vector field is not defined at some points. Instead of solving
Problem (4), we find an approximate solution defined on Ω deprived of a
finite number of points by proceeding in two steps:

4here, the used norm is the Froebenius norm.
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• first, we solve Problem (4) while neglecting the non-linear constraint;
• then, we refine this approximation using a linearization of the norm con-

straint.

2.3 Solving the linear approximation of the problem

By neglecting the non-linear constraint in the third equation, Problem (4)
becomes a simple steady-state heat problem. Classically, we introduce a weak
formulation of this problem:

∀v ∈ V,

∫

Ω

∇ũ∇v dx = −

∫

Ω

∇u0∇v dx (5)

with V = H1
0 (Ω) being the space of H1 functions vanishing on ∂Ω, ũ ∈ V

and u = ũ + u0. The Lax-Milgram theorem guarantees the existence and the
uniqueness of a solution to this problem. Numerically, we solve this problem
using a Galerkin finite element approach on a triangulation Th of Ω with P1-
Lagrange elements. This yields a linear problem A× x = b. Since matrix A is
symmetric and positive-definite, the vector x is computed using a conjugate
gradient method [15].

2.4 Linearization of the norm constraint

The non-linear constraint |u| = 1 is then considered. Due to the non-linearity
of this constraint, functional J is no longer convex and its argmin is zero,
and, as it has a lower bound of zero, it means that it has several local energy
minima. In our approach, we find the local minima closest to our first approxi-
mated solution using a linear approximation of the norm constraint [16] based
on Lagrange multipliers. The algorithm is based onto the fact that normaliz-
ing vectors with a norm greater than one reduces the value of the functional
J . In practice, we use an iterative process starting with the solution of Prob-
lem (3) as initial solution. Each step of this process is divided in two parts,
a PDE resolution and a normalization process, each of them decreasing the
value of J . In the following, the term vn(p) denotes the value of the vector v

at point p during the step n. Considering v as a solution to Problem (5), we
have |vn(p)| = 1 at each point p of the triangulation Th. In order to compute
the solution at step n + 1, we add a linear constraint to each point p ∈ Th:

vn+1(p) · vn(p) = 1. (6)

and, using the conjugate residuals method, we solve the previous steady-state
heat Problem (3) under constraints given by Equation 6 at each point p ∈ Th.
We introduce Lagrange multipliers [17] to add the linear constraint at each
point leading to the following problem:
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(

A C

C 0

)(

u

λ

)

=

(

b

1

)

, (7)

with 1 the column matrix having all its elements equal to 1, λ the column
matrix, which coefficients λp, p ∈ Th, corresponds to the Lagrange multiplier
associated to the constraint |v(p)| = 1, and C a diagonal matrix, such that
C(2p, 2p) = α and C(2p + 1, 2p + 1) = β, for vn(p) = (α, β). Adding those
constraints changes the initial problem into an optimization problem under
constraint. Eventually, we normalize all obtained vectors, thus decreasing the
value of the functional J as the constraint ensures us that |vn+1(p)| ≥ 1.

Remark 1. Except the traditional numerical errors that are due to the dis-
cretization, the background mesh, i.e. the triangulation Th, that we use to
solve the Problem (4) has no significative influence on the structure of the
generated directionality field with regard to the convergence and the stability
of the procedure.

3 Domains partitioning

At completion of the first step, we obtained a piecewise affine, continuous unit
vector field defined at the vertices of Th. It can be extended by interpolation to
define a continuous vector field over Ω. This vector field satisfies a prescribed
Dirichlet boundary condition on ∂Th. Each of these representation vectors
corresponds to a cross, leading to a smooth cross field CF defined over all Th.
The general idea of our approach consists in analyzing the topology of this
cross field. This means identifying its singularities, or zeroes, and connecting
them, thus emphasizing its underlying structure. We will also consider the
geometric singularities of Th, which are the C0 corners of the domains, so as
to obtain a partition of Th into quadrilateral regions. The notion of topological
skeleton of a vector field is well-known [18], and can be understood as a set
of curves representing the defining features of the vector flow, for example,
the set of curves integrated from saddles points along the directions of the
eigenvectors. We extend it here to cross fields, in a similar manner to what
has been suggested in other works [13]. A semantic difference is that we use
this topological structure to partition the geometric domain.

3.1 Singularities of a directionality field

Definition 1. Given a vector field v defined on Ω, a point x ∈ Ω such that
v(x) = 0 is a singularity.

By extension, in our context, the singularities of the directionality field are
detected as the zeroes of the piecewise linear interpolation of the represen-
tation vector field defined at the vertices of Th. Moreover, we include the
discontinuities of the domain boundaries as singularities. Considering these
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intrinsic geometric singularities allows us to obtain a fully quadrilateral par-
titioning of the domain (see Section 3.3). We recall here some definitions and
propositions [19] related to the Poincaré index of the zeroes of a vector field.

Definition 2. The Poincaré index of an isolated zero x of a 2d vector field
v = (v1, v2) is the number of rotations of the vector field while traveling in
positive direction along any closed curve enclosing x but no other singularity.
Put another way, for γ a closed curve containing x and no other singularity,
the Poincaré index ix of P0 is defined as:

ix =
1

2π

∮

γ

dφ, with φ = arctan
v1

v2

. (8)

Proposition 1. Let v be a vector field on a 2d geometric domain Ω. Suppose
v is defined as a linear interpolation of non-zero values given at the vertices
of a triangulation, Th of Ω, all singularities are necessarily of first order, i.e.
their index is either 1 or −1.

Proof: The result is exhibited by enumerating the different possibilities and
summing the angular rotations of the field along the edges of the triangle
around the singularity.

3.2 Streamlines and separatrices

A streamline of a vector field is a special kind of field line that can be defined
as follows:

Definition 3. Let v be a C1-continuous vector field defined over a domain
Ω, and let γ(s), s ∈ [0, 1] be the parametrization of a C1 curve defined over
Ω, with ∂γ(s) its derivative. Then γ is a streamline of v if

∀ s ∈ [0, 1], ∂γ(s) × v(γ(s)) = 0, (9)

where ”×” denotes here the cross product of two vectors. A streamline is
thus a C1-continuous curve for which the tangent to the curve at any given
point has the same direction as the vector field value at this point. It is to be
noted that there is exactly one streamline going through any regular point of
a vector field, and that if γ is not a closed curve then both end points of γ

are either a singularity of the representation vector field or lie on ∂Ω.
Now we extend this concept to cross fields. Around any regular point of

a cross field, this field can locally be described as 4 vector fields. At singu-
lar points, such a separation of the components of the crosses is impossible.
Thus, in regular areas (containing no singularity), locally to a small neighbor-
hood of each point, it can be described as the orthogonal intersection of two
streamlines. Those streamlines can be computed, starting from this point, by
selecting one of the 4 vectors defined at this point and, doing so, by selecting
one of the 4 smooth vector fields and then using the same numerical scheme
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one would use to compute a vector streamline. By repeating this process,
one can compute whole streamlines on the field as long as they do not go in
the vicinity of field singularities. We can now give a suitable definition for
streamlines in cross fields.

Definition 4. Let CF = (v1,v2,v3,v4) be a continuous cross field de-
fined over a domain Ω, except for a finite number of singularities5. Let
γ(s), s ∈ [0, 1] be a parametrization of a C1 curve defined over Ω, with
∂γ(s) its derivative. Then γ is a streamline of CF if

∀ s ∈ [0, 1],∃i ∈ [1..4], ∂γ(s) × vi(γ(s)) = 0. (10)

For each singularity S, we now want to build separatrices, which are the
streamlines of the cross field ending on S (the red streamlines in Figure 3(a),
for example).

Definition 5. A streamline γ is a separatrix if there is a singularity S0 such
that ∃ t ∈ [0, 1], γ(t) = S0. In that case, we say that γ is a separatrix of S0.

(a) (b)

Fig. 3. In (a) and (b), streamlines in a triangle containing a singularity or not.

To compute the separatrices at a singularity S0, we have to find a stream-
line γ such that γ(t) = S0 for t ∈ [0, 1]. Numerically, in the triangulation Th of
Ω, we apply the following process. As a singularity S0 is necessarily located in
a triangle T0 of Th or on an edge separating two triangles T1 and T2 of Th, any
separatrix of S0 crosses the edges of T0 in the first case and the edges of T1

and T2 in the latter case. Let us consider the first case, the latter case being a
straightforward extension. Considering a singularity S0 located into a triangle
T0 ∈ Th defined by its 3 vertices S1, S2 and S3. We traverse all the edges of
T0 to find the points where separatrices of S0 intersect the edges of T0. Let P

be a point of the edge [S1, S2]. Considering the cross field CF , we compute

5we remind the reader here that this means that the representation vector field
of F is C1-continuous, and not that any of the vi field is C1-continuous
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the value CF (P ) by linearly interpolating the value of CF (S1) and CF (S2).
The value of CF (P ) corresponds to a cross or to 4 vectors vk, 0 ≤ k ≤ 3
representing the directions of the streamlines at P . Let u(P ) be the vector
S0P. Hence, a streamline going through P is a separatrix of S0 iff

∃k ∈ [0..3],
vk

|vk|
=

u(P )

|u(P )|
. (11)

In this case, the tangent of the streamline at P is vk (see Figure 4).

S0
u(P )
|u|(P )

P vk

|vk|

Fig. 4. The intersection of a separatrix (in red) of the singularity S0 with the triangle
around S0, at a point P .

Applying this process for every singularities of CF , we define all the in-
tersection points between the triangles containing a singularity and the asso-
ciated separatrices. All these points are on the boundary of the triangulation
T ′

h = Th − {T0, . . . , Tn} with {T0, . . . , Tn} the sets of triangles containing the
singularities of CF . By construction, CF is regular on T ′

h. Then the expected
separatrices can be approximated on T ′

h using the following Runge-Kutta nu-
merical scheme until either the boundary of the geometry or another triangle
containing a singularity is met. Considering a triangle T ∈ T ′

h, a point Xi ∈ ∂T

and a direction di at Xi, our aim is to find the intersection point Xi+1 be-
tween ∂T and the line defined by the direction di and the point Xi. Hence
the direction di+1 in Xi+1 should be computed (see Figure 5-a and 5-b).

To this end, a representation vector in Xi is linearly interpolated from
the representation vectors of the vertices Si of T . The vector vdi

of the cor-
responding cross Ci that is closest to the input direction di is selected. The
selection of this vector is propagated onto all crosses interpolated over T ,
thus defining a vector field Y = f(X) over T that is consistent with di (see
Figure 5-a). Then we use the Heun’s method [20], an easy-to-use variation
of a Runge-Kutta method, to integrate the ODE Y = f(X) over T , starting
from Xi. A line can thus be built using segments, by iterating this integration
process over the successive encountered triangles. It is to be noted that, even
though the singularities of the representation vector field and the ones of the
cross field are identical, their separatrices are totally different.



Multi domain partitioning and quadrilateral meshing 11

Ci

di

vdi
= f(Xi)

Xi

TS1

S2

S3f(S1)

f(S2)

f(S3)

Xi

X ′
i+1

f(Xi)

di+1

f(X ′
i+1)

Xi+1

a b

Fig. 5. Illustration of the integration process over a triangle.

Another interesting point is that the Poincaré index of a singularity of the
representation vector field and the number of separatrices of the corresponding
singularity in the cross field are closely related. In our context, Prop. 1 ensures
that the Poincaré index of the singularities of the representation vector field
we build is +1 or −1 leading to only have 3 or 5 valent singularities in our
case. Each singularity having an index of +1 (respectively −1) corresponds to
a singularity of the cross field having 3 (resp. 5) separatrices). Regular points
of the vector field correspond to points where a cross is defined and therefore
are the intersection of two streamlines in the cross field (see Figure 6).

3.3 Definition of the domain partitioning.

Considering a domain Ω and a cross field defined over Ω, the set of separatri-
ces of this cross field along with their corresponding singularities allows us to
define a partitioning of Ω in parts, or regions. By definition of separatrices,
the cross field is smooth in every region, and thus, each region can be meshed
through a submapping technique [21] to obtained a grid-structured quadri-
lateral mesh. As all the separatrices ends either on a singularity or on the
boundary of the geometry, there is no guarantee that the obtained regions are
four-sided. In order to get four-sided regions, we extend the set of representa-
tion vector field singularities by adding a set of geometric singularities, which
are the non-convex C0 corners of ∂Ω. We then build separatrices for those
geometric singularities by using the same process than for the representation
vector field singularities. This process is fully automatic, all the non-convex
C0 corners of ∂Ω are added, and as initial parts do not contain, new ones are
4-sided.

Proposition 2. The set of separatrices of the geometric and field singulari-
ties leads to a partition of Ω into 3 or 4-sided regions. The 3-sided regions
necessarily contain a singularity.

Proof: By construction, all the regions we obtained contains no singularity
except eventually on their corners. This means that a parametrization f(u, v)
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v1

v2

v3

v1

v2

v3

∆12 > 0
∆23 > 0

∆31 > 0

∆12 + ∆23 + ∆31 = 2π

v1

v2

v3

v1

v2

v3

∆12 < 0∆23 < 0

∆31 < 0

∆12 + ∆23 + ∆31 = −2π

Fig. 6. A 3-valent singularity, on top, and a 5-valent singularity, on bottom. In
blue, the local cross field, and in green the corresponding representation vector field.
Separatrices are in red, along with the shape of surrounding streamlines in blue dots.
On the right, in light green dots, the linear interpolation of the representation vectors
along the edges is shown. The path along which we compute the index is the triangle
around the singularity.

of the inside of a region is always possible. Moreover, the boundaries of the
considered region can always be included inside the parametrization by conti-
nuity, except if one edge of the region is of null length, which corresponds to
a triangular region. In this case, one of the two sets of parallel streamlines of
the region has all its streamlines that converge to a same point, which is the
degenerated edge of the region.

For all the streamlines to behave like this, the angle at this corner of
the region must be at maximum π

4
, by continuity of the cross field inside the

region. As the directions of the separatrices going from an inner singularity are
uniformly distributed, due to the piecewise linear nature of the cross field, and
as we only have 3 and 5-valent singularities, the minimum angle for a region
corner that is a singularity inside Ω is 2π

5
. It follows that the degenerated edge

of the considered region is a geometric corner featuring a small angle. In the
absence of such a degenerated edge, the region can be parametrized by a one
to one mapping function f(u, v), with u ∈ [0, 1] and v ∈ [0, 1].⊓⊔

Note that, while the computational cost of the method is strictly related
to the number of elements in the background triangulation, the time needed
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to partition the domain for the different examples presented in this paper
varied from about one second, for most of them, to twenty seconds for the
most complicated ones.

4 Results

Once each of the domain has been partitioned into four-sided parts, each of
these parts is meshed using a transfinite bilinear interpolation. This mesh-
ing process creates a parametrization of the region that coincides with the
boundary parametrization. It leads to an immediate grid meshing process by
considering any discretization of the parameter spaces of u and v. It shall be
noted that the computational cost of this step, even for millions of elements,
is negligible with respect to the cost of the domains partitioning step.

4.1 Quality comparison

While it is not easy to define a quality measurement for a domain partitioning,
it is a lot more convenient to define one for quadrilateral meshes. In this
section, we compare meshes obtained with our approach with meshes obtained
using an unstructured algorithm provided by the software GMSH [22]. Both
the minimum angle measure and the scaled Jacobian measure are used to
compare the results. Both meshes have about 9000 quadrilaterals. On Figure 7,
we present the minimum angle measure as color maps for each mesh. On
Figure 8, we do the same for the scaled Jacobian measure and, on Figure 9, we
presents histograms of those results. For both measures, we get better results
with our approach. It is mainly due to the weak number of singularities that
arises in the partitioning.

a b

Fig. 7. Color map of the minimum angle quality measure on our mesh (in a) and
on the unstructured mesh (in b).

4.2 Single domain examples

The first example of Figure 10 illustrate the symmetry preservation of our
approach. We can also note the weak number of singularities: four 3-valent
singularities and three 4-valent ones.
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a b

Fig. 8. Color map of the jacobian quality measure on our mesh (in a) and on the
unstructured mesh (in b) as a color map.

a b

Fig. 9. Histograms representing the repartition of elements by quality, the unstruc-
tured mesh being represented in red and our mesh in blue. In (a) the histogram
represents the repartition for the minimum angle quality, and in (b) it represents
the repartition for the jacobian quality.

In Figure 11, we show how the domain partitioning evolves when the ge-
ometry of the domain is slightly modified. In this case, the domain in a rect-
angular area where two quarter of circles have been removed. In Fig. 11-a,
the two quarters of circles are symmetric and then we obtain a symmetric
quadrilateral mesh. In Fig. 11-b, the vertical side of the right quarter of circle
is greater and the two singularities that are inside the domain are not more
connected. In Fig. 11-c, the difference between the two quarters of circle is
more important but the global topology of the domain partitioning is similar.

The last example of Figures 12 and 13 is a two-dimensional aerofoil section
consisting in three elements, a leading-edge flap, a main element and a trailing-
edge flap. In order to compute flows around these elements, it is better to get
boundary layers of quadrilaterals along the aerofoil. It is what we get in Fig
12-b where just few singularities appear around the aerofoil. In Fig. 13, wwe
highlight two different regions of the final mesh. The generated boundary
layers allows us to obtain cells orthogonal to the boundary. We can note that
some singularities are very close from the boundary. It is due to a strong
curvature of the boundary in a small area.
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Fig. 10. A symmetric domain partitioning on the left and two focuses on the ob-
tained quadrilateral mesh

a b c

Fig. 11. Additional examples.

4.3 A multi-domain example

In Figure 14, two incident domains are partitioned separately. Even if the ob-
tained meshes have a similar element size, the common curve is not discretized
in the same way (see Fig. 14-b). We can also see that the partitioning lines of
each domain do not cross the common curve (see Fig. 14-a).

On the contrary, in Figure 15, the two domains were partitioned and dis-
cretized together. Thus, we obtain a contact line that was discretized only
once and a conformal mesh all over both domains. It may be noted that un-
like in Figure 14, the separatrices emanating from a singularity of a domain
can spread through the other domain.

5 Conclusion

In this paper, we presented a novel approach to domain partitioning, which
can be used as an efficient block-structured quadrilateral mesh generation al-
gorithm. This fully automatic algorithm uses the solution of a PDE to extend
the information contained by normals and tangents at the boundary inside
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a

b

Fig. 12. A geometric 2d space around an aerofoil in (a) and and the corresponding
domain partitioning in (b)

a b

Fig. 13. Mesh generated in area of interest for the space around an aerofoil.

the domain. It generates a partition of the domain into four-sided regions
with curvilinear edges that can be easily meshed into quadrilateral elements
using a transfinite bilinear interpolation. The number of singular vertices in
the resulting mesh is minimal or close to minimal. Being an algebraic method
at its core, our method provides results that are independent of the initial ori-
entation of the domain and that respects its geometric symmetries. An added
benefit of our method is that the main computational cost is due to the do-
main partitioning. As a result, the additional cost for having a more refined
mesh is very low, making our method quicker than most other methods for
refined meshes. Should the need arise, both the partitioning and the meshing
processes have data structures and implementation allowing for paralleliza-
tion. Although the meshing part of the process is currently unable to deal



Multi domain partitioning and quadrilateral meshing 17

a b

Fig. 14. Two domains sharing a curve are discretized separately: domain partition-
ing in (a) and quadrilateral meshes in (b).

a b

Fig. 15. The domains given in Fig. 14 are jointly meshed: domain partitioning in
(a) and quadrilateral mesh in (b).

with varying prescribed element sizes, future work is scheduled to improve
this by using known methods to refine the mesh inside desired regions.
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